skip to main content


Search for: All records

Creators/Authors contains: "Coad, Margaret M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Soft robot serial chain manipulators with the capability for growth, stiffness control, and discrete joints have the potential to approach the dexterity of traditional robot arms, while improving safety, lowering cost, and providing an increased workspace, with potential application in home environments. This paper presents an approach for design optimization of such robots to reach specified targets while minimizing the number of discrete joints and thus construction and actuation costs. We define a maximum number of allowable joints, as well as hardware constraints imposed by the materials and actuation available for soft growing robots, and we formulate and solve an optimization problem to output a planar robot design, i.e., the total number of potential joints and their locations along the robot body, which reaches all the desired targets, avoids known obstacles, and maximizes the workspace. We demonstrate a process to rapidly construct the resulting soft growing robot design. Finally, we use our algorithm to evaluate the ability of this design to reach new targets and demonstrate the algorithm's utility as a design tool to explore robot capabilities given various constraints and objectives. 
    more » « less
  2. null (Ed.)
    Due to their ability to move without sliding relative to their environment, soft growing robots are attractive for deploying distributed sensor networks in confined spaces. Sensing of the state of such robots would add to their capabilities as human-safe, adaptable manipulators. However, incorporation of distributed sensors onto soft growing robots is challenging because it requires an interface between stiff and soft materials, and the sensor network needs to undergo significant strain. In this work, we present a method for adding sensors to soft growing robots that uses flexible printed circuit boards with self-contained units of microcontrollers and sensors encased in a laminate armor that protects them from unsafe curvatures. We demonstrate the ability of this system to relay directional temperature and humidity information in hard-to-access spaces. We also demonstrate and characterize a method for sensing the growing robot shape using inertial measurement units deployed along its length, and develop a mathematical model to predict its accuracy. This work advances the capabilities of soft growing robots, as well as the field of soft robot sensing. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    Pneumatically operated soft growing robots that extend via tip eversion are well-suited for navigation in confined spaces. Adding the ability to interact with the environment using sensors and tools attached to the robot tip would greatly enhance the usefulness of these robots for exploration in the field. However, because the material at the tip of the robot body continually changes as the robot grows and retracts, it is challenging to keep sensors and tools attached to the robot tip during actuation and environment interaction. In this paper, we analyze previous designs for mounting to the tip of soft growing robots, and we present a novel device that successfully remains attached to the robot tip while providing a mounting point for sensors and tools. Our tip mount incorporates and builds on our previous work on a device to retract the robot without undesired buckling of its body. Using our tip mount, we demonstrate two new soft growing robot capabilities: (1) pulling on the environment while retracting, and (2) retrieving and delivering objects. Finally, we discuss the limitations of our design and opportunities for improvement in future soft growing robot tip mounts. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)